연구소 자리를 알아보는 와중 .. 이번 학기 들었던 면역학 강의 범위와 겹치는 연구를 만났다. 교수도 여섯이나되고 내용도 세부적이고 시험지가 무려 열여섯 장이었지만 예상외로 성적을 올려준 수업. 조교 열성이 큰 몫 했다. 

Fred Hutchinson Cancer Research Center 에서 진행중인 종형성에 있어 centromere 의 영향, 그 상당성에 비해 작은 안정성 - 그리고 궁극적으로 그것의 발암 가능성. 

Fred Hutchinson Cancer Research Center
1100 Fairview Ave. N. PO Box 19024 Seattle, WA 98109
©2012 Fred Hutchinson Cancer Research Center, a 501(c)(3) nonprofit organization.


http://labs.fhcrc.org/malik/ 


Evolutionary arms-races

The Red Queen: “It takes all the running you can do, to keep in the same place.”--Lewis Carroll, “Through the Looking Glass”

The Red Queen Hypothesis: “For an evolutionary system, continuing development is needed just in order to maintain its fitness relative to the systems it is co-evolving with.” --Leigh Van Valen (1973)

Red QueenOur genomes are a tenuous conglomerate of different genetic entities, each trying to maximize their own evolutionary success, often at great cost to their genomic neighbors. As expected, this conflict can create problems for the host organism. My lab is interested in evolutionary studies of genetic conflict to gain insight into their mechanisms and consequences. We study genetic conflicts primarily in three systems: Drosophila, primates and yeast. While there are a number of investigative projects that are going on at any given time in the lab, our focus is on three conflicts in particular:

  • centromeres
  • innate and intrinsic immunity against viruses in primates
  • mobile genetic elements in Drosophila.

More information about each of these projects and the rationale behind them can be found on our "Projects" page.

The centromere paradox: stable inheritance with rapidly evolving DNA

Centromeres are sites of spindle attachment to chromosomes at mitosis and meiosis, and are crucial for the stable inheritance of all eukaryotic chromosomes. Defects in this segregation machinery are responsible for aneuploidy events, which may also lead to cancer. The simplest known centromeres of the budding yeast Saccharomyces cerevisiae have a 125 bp consensus which are each packaged in a single nucleosome containing the centromeric histone Cse4 instead of H3. However, this simplicity is atypical of other eukaryotes, in which centromeric repeats comprise the most rapidly evolving DNA sequences in eukaryotic genomes, differing even between closely related species. These satellite changes are brought about by a variety of mutational processes, including replication slippage, unequal exchange, transposition and excision. Such rapid change is paradoxical: why hasn't a single optimal sequence been fixed at centromeres given its essential role in faithful segregation of chromosomes?

We have investigated this question by studying the evolutionary history of histone H3-like centromeric histones (including Cenp-A in mammals). Comparison of the H3-like centromeric histone Cid from closely related Drosophilaspecies reveals that both the N-terminal tail and the histone core domain contain regions that have undergone frequent episodes of adaptive evolution, where a greater than expected amino acid replacement changes have become fixed between the two species, D. melanogaster and D. simulans. This is unexpected for a histone molecule, as histones are among the most evolutionarily constrained eukaryotic proteins. Within the histone core domain, most adaptive changes lie in loop 1, a region that makes direct H3-DNA contacts, suggesting that centromeric histone binding is sequence dependent. The adaptive signal and its location provide compelling evidence that Cid has evolved in concert with centromeric DNA. Understanding the basis of these adaptive changes could resolve the paradox of rapidly evolving centromeres.

We suggest that asymmetry at female meiosis may be the key. Of the four products of meiosis, three are lost and only one becomes the oocyte nucleus. There is evidence that the asymmetry of the meiotic tetrad provides an opportunity for chromosomes to compete for inclusion into the oocyte nucleus by attaining a preferable orientation at the meiosis. Centromeres that can exploit this opportunity at meiosis I will “win”, and even a slight advantage at each female meiosis is enough to rapidly drive a centromere to fixation. Additional recruitment of centromeric nucleosomes, for example, by the expansion of a centromeric satellite, would confer this advantage (Figure). Genetic evidence that some animal and plant centromeres are “stronger” at meiosis dates back nearly half a century. In maize, centromere strength is characteristic of heterochromatic “knobs”, which display poleward movement and meiotic drive during female meiosis, and a similar drive process might contribute to the success of selfish B chromosomes. In humans, a variety of Robertsonian translocations, with two adjacent centromeres, consistently display a higher than expected transmission ratio.

In females, these “winning centromeres” simply exploit the inherently destructive process of forming the egg, and thus might not reduce fecundity. However, in Drosophila males, heterochromatic differences between paired chromosomes at meiosis I can cause non-disjunction manifested as skewed sex ratios or infertility. We propose that these chromosome pairs have centromeric imbalances. Cid is the best candidate to relieve deleterious effects associated with centromere meiotic drive. For example, if Cid were to mutate such that it preferentially bound the weaker centromere, centromeric balance would be restored (Figure). Such a beneficial cid allele will drive to fixation itself. This two-step process (Figure) suffices to explain both the evolutionary dynamics of satellite DNA and the adaptive evolution of Cid. Episodes of drive and deleterious mutation by transposons would lead to the accumulation of satellites representing centromeric relics surrounding functional centromeres. This would also provide a mechanism for the well-documented fixation of chromosome-specific satellites in successive episodes of drive.

Consider this process occurring in two isolated populations of the same species. Satellite-Cid configurations will diverge rapidly. In each population, Cid will evolve to suppress the deleterious effects of satellites that have driven through that population. By so doing, Cid becomes incompatible with the independently evolving centromeric satellites in the other population. Crosses between the populations will result in hybrid defects as centromeric drive is released again. Thus, the satellite-Cid drive process results in the onset of reproductive isolation between the two populations. In other words, speciation is an inevitable consequence of centromere evolution.

We are currently testing this model using recently diverged species of Drosophila.

Malik, HS Curr OP (2002)

Centromere drive model. Expansion of a satellite that binds Cid provides more microtubule attachment sites. This stronger centromere drives in female meiosis, but also leads to increased non-disjunction. A mutation in Cid that alters sequence specificity leads to more extensive binding of the weaker centromere, providing more microtubule attachment sites. This restores meiotic balance and alleviates non-disjunction.




http://labs.fhcrc.org/malik/projects.html 

What we work on . . . .

 

Our genomes are a tenuous conglomerate of different genetic entities, each trying to maximize their own evolutionary success, often at great cost to their genomic neighbors. As expected, this conflict can create problems for the host organism. My lab is interested in evolutionary studies of genetic conflict to gain insight into their mechanisms and consequences. For this purpose, we study centromeresmobile genetic elements and rapidly evolving proteins in Drosophila.

    are crucial for the faithful segregation of genetic information in eukaryotes, but they remain the most mysterious part of our genomes. In both animal and plant meiosis, in the process of forming an egg, of four meiotic products, only one becomes the egg, while the other three are evolutionary dead-ends. There is intense competition between various chromosomes, likely through their centromeres for success into the egg. Our hypothesis is that this results in the rapid gain of centromeric satellites often with deleterious consequences to the host. For instance, in humans, Robertsonian fusions (chromosomes fused at their centromeres) are transmitted more frequently in women, but male carriers of these fusions are partially to completely sterile. We study the rapid evolution of centromeric components to gain a better understanding of aneuploidy events (commonly observed in cancer cells) and to answer one of the long-standing questions in biology: how do two species evolve from one? (read more)

Malik, HS Curr OP (2002)

    genetic elements are ubiquitous and constitute large fractions of eukaryotic genomes. They are the classical example of genomic 'mercenaries', interested in their own evolutionary success. We study the evolutionary origins of different classes of transposable elements and their consequences to host fitness and genome organization. We have been concentrating on the evolutionarily and medically important transition of a non-viral retrotransposon to an infectious retrovirus, using models in Drosophila and C. elegans. I have discovered a Drosophila host gene (Iris) homologous to the envelope genes of both insect baculoviruses and the gypsy and roo retroviral lineages. This gene has been present as a host gene in insect genomes for at least 250 million years (since the origin of Diptera) and may play a crucial role in membrane transport in female oogenesis. We are also studying the evolution of innate defense strategies against retroviruses in primate genomes (collaboration with Michael Emerman)


Malik, HS Genome Res. (2000)cover page PLOS Genetics 2005

Sawyer et al. PLOS (2004)

    have been found as a consequence to genetic conflict, including host-parasite interactions (ex. Immunoglobulin, viral envelopes). Recent studies have found that a large number of ''speciation'' genes encode either DNA-binding proteins or even components of the nuclear pore complex. My lab has initiated cytological and functional studies with the ultimate aim of understanding what selective pressures drive the adaptive evolution of these classical intra-cellular proteins (i.e. what genetic conflict are they subject to). This will further our understanding of the role selection plays in the shaping of our genomes, and potentially expand the list of categories to which rapidly evolving proteins can belong.



Posted by water_
,

엄마가 산부인과에서 호르몬제 복용을 권하시더란다. 자료 검색을 좀 해봐야겠다.

폐경 Menopause 는 난소의 주요 기능들이 멈춤을 말한다. 이는 여성 호르몬의 생산이 멈추면서 나타나는 현상으로 1년간 월경가 없을 때 폐경으로 진단한다.



대체 호르몬 테라피 HRT (hormone replacement therapy)
폐경 후 골다공증, 심장병 등을 예방하기 위해 호르몬 복용을 하는 경우가 있다. 이러한 경우 사용되는 호르몬은 에스트로겐 estroge 이며, 때로 프로제스테론 progesterone과 함께 사용되기도한다. 두 호르몬은 함께 자궁의 벽을 두텁게한다. Estrogen 에스트로젠은 몸이 Ca 칼슘을 어떻게 사용하는지에 영향을 주어 폐경 이후 골다공증 등의 증세가 나타나는 것이다. Estrogen 은 또한 혈액의 cholesterol 콜레스테롤 수치를 조절하기도하여 심장병과도 연관이 있다. Estrogen 은 또한 질을 건강히 유지한다.
자궁이 있는 여성의 경우 (hysterectomy 자궁절제술을 하지 않은 경우), Progesterone 없이 Estrogen 만을 복욕한 경우, 자궁내막 암 확률을 높힐 수도있다. 폐경 이전의 여성의 경우, 자궁내막 세포들이 무너져 월경을 통해 몸 밖으로 배출된다. 하지만 자궁내막이 무너지지 않는 폐경 이후의 여성은 자궁에 많은 세포가 쌓이면 암이 유발될 수 있다. Progesterone 프로제스테론은 자궁내막 세포를 다달히 무너지게 하면서 자궁내막 암을 예방한다. 따라서 progesterone 프로제스테론을 복용하는 경우 다달히 월경과 같은 하혈을 경험 할 수도있다. 때로 이러한 하혈은 줄어들기도하고 사라지기도한다.

Estrogen 이 처방되는 경우
일과성 열감 (안면 홍조)
건조한 질
과한 땀

호르몬 테라피의 위험성
자궁내막 암 의 가능성
혈전 (혈액의 뭉침)
뇌졸중
Estrogen 에스트로겐과 progestin 프로제스틴 을 병행복용한 경우 심장병의 호가률이 높아지기도 함.

호르몬 테라피를 피해야 할 경우
유방암이 있거나 있었던 경우
자궁내막암이 있거나 있었던 경우
하혈이 있을 경우
혈전이 있거나 있었던 경우
뇌졸중이 있었던 경우
간이 약할 경우
쓸개가 약할 경우
흡연자일 경우
임신했을 경우

*호르몬 복용 전 의사와 반드시 상담 할 것.
 
개인적으로 호르몬들의 경우 제조되거나 다른 동물의 것을 사용한다. 사실상 몸에서 만들어지는 것들이니 특별히 해가되지는 않을 것이라 생각되지만, 생태리듬에 엇박자를 조성하는 것이 아닌가 싶어 걱정이 앞선다. 골다공증의 경우 보다 꾸준히 칼슘 Ca를 섭취하고 콜레스테롤 또한 폐경 후 주의해야 할 요소이니, 운동과 식이요법을 집중하는 것이 좋을 것 같다. 호르몬 복용 이전에 이러한 시도를 먼저 하는 것이 옳지 않은가 싶다.
의사분과 전적으로 동의하는 점은 운동이 필수라는 것. 운동은 꼭 해야 한다고 하셨단다. 운동은 콜레스테롤 수치조절에 좋은 영향을 줄 뿐 더러 - 골다공증과 심장병 이외에 우울증과 같은 심적 변화도 있을 수 있는데 이에 또한 운동이 상당히 긍정적인 영향을 준다. 호르몬 변화로 감정적 기복이 생길 수도 있지만, 폐경기의 여성은 자녀가 자립하기 시작하면서 집에서 멀어지기 시작하는 시기와 일치하기도한다. 이러한 환경적 요소가 감정적 변화에 기여하는 것이 사실이다. 따라서 호르몬을 복용하는 것만이 방법이 아니라는 생각이 든다. 고로 운동은 필히 중요하다고 생각한다.
약은 1일 1회 섭취용 1알의 알약이더라. 이를 매일 먹어야 한단다 - 매일 약을 복용한다니, 꽤나 번거로운 일이다. 산부인과 의사께서는 1개월 동안 복용해보고 병원에 다시 나오라 하셨다는데 개인적으로 호르몬 복용 이전에 다른 노력들이 필요 할 것 같다. 순차적으로 진행해야겠다.

호르몬 테라피에 앞서 중요한 것은
저 콜레스테롤 식단
꾸준한 칼슘섭취
꾸준한 운동

칼슘 Ca 이 많은 음식
우유
멸치
달걀
치즈
요구르트
씨리얼, 곡물, 콩, 두부
양배추 - 녹엽채소에 칼슘이 많음
청경채
케일
다시마
생선류

칼슘 보충제에 대해서는 논란이 많으니 특별히 추천하고 싶지는 않다. 이에 대해서는 다음 기회에.


자료출처
http://www.luminousstatus.info/womens-health/menopause-bleeding/
http://www.fatfreekitchen.com/nutrition/calcium.html
http://naturis.tistory.com/562
http://www.webmd.com/menopause/guide/hormone-replacement
http://en.wikipedia.org/wiki/Menopause

Posted by water_
,



다시는 네버어게인 술 마시지 않으리 - 라고 다짐했지만 와인 잔을 보고있자니 ................................... 술은 몸이 너무 힘들다아 ............ 휴우 빨개지는 이유를 찾고 나니 더욱 마시지 말아야 할 듯 싶음.

술을 마시고 얼굴, 목, 어깨, 등 몸 전체 - 가 빨개지는 이유는
체내 acetaldehyde 축적 때문임
acetaldehyde 가 축적되는 이유는 효소 (enzyme) acetaldehyde dehydrogenase (ALDH2) 엔코딩 중 일어나는 missense 미스센스로 인한 것임.
미스센스 missense 란 dna 특정 염기 치환으로 인한 전형 rna 코돈이 변하여 - 단백질 합성시 본래와는 다른 아미노산이 지정되도록 코드된 것.
acetaldehyde dehydrogenase (ALDH2) 는 알코올 신진대사의 결과물인 acetaldehyde 를 분해하는데에 필요함
ALDH2 가 부족함으로 acetaldehyde 분해가 어려워짐 - 따라서 acetaldehyde 의 축적
붉은 피부는 혈관의 팽창으로 인한 효과

얼굴이 붉어지는 것은 ALDH2 부족과 때로 관련이 있을 수 있음
ALDH2가 부족한 음주자들은 부족하지 않은 음주자들보다 식도, 간, 소화관 등 암의 확률이 높을 수 있음
acetaldehyde 는 발암물질 임 
 
자료 출처 http://en.wikipedia.org/wiki/Alcohol_flush_reaction

Posted by water_
,