Euler's identity 
e^{i \pi} + 1 = 0\,\! 

e is Euler's number, the base of natural logarithms,
i is the imaginary unit, which satisfies i2 = −1, and
     π is pi, the ratio of the circumference of a circle to its diameter.

삼각함수와 지수함수에 대한 관계를 나타낸다. 오일러의 등식은 이 공식의 특수한 경우이다.


오일러의 공식은 가장 아름다운 것들을 포함하고 있다. 세가지 기본적 산술연산: 덧셈, 곱셈, 지수를 포함하고 있으며 다섯가지의 가장 기본적인 상수: 0, 1, pi, theta, i 를 포함하고 있다.
  • The number 0, the additive identity.
  • The number 1, the multiplicative identity.
  • The number π, which is ubiquitous in trigonometry, the geometry of Euclidean space, and analytical mathematics (π = 3.14159265...)
  • The number e, the base of natural logarithms, which occurs widely in mathematical and scientific analysis (e = 2.718281828...). Both π and e are transcendental numbers.
  • The number i, the imaginary unit of the complex numbers, a field of numbers that contains the roots of all polynomials (that are not constants), and whose study leads to deeper insights into many areas of algebra andcalculus, such as integration in calculus.
     


  • The identity is a special case of Euler's formula fromcomplex analysis, which states that

    e^{ix} = \cos x +  i\sin x \,\!

    for any real number x. (Note that the arguments to thetrigonometric functions sine and cosine are taken to be in radians, and not in degrees.) In particular, with x = π, or one half turn around the circle:

    e^{i \pi} = \cos \pi +  i\sin \pi.\,\!

    Since

    \cos \pi = -1  \, \!

    and

    \sin \pi = 0,\,\!

    it follows that

    e^{i \pi} = -1 + i 0,\,\!

    which gives the identity

    e^{i \pi} +1 = 0.\,\!
     

     
    The exponential function ez can be defined as the limit of(1 + z/N)N, as N approaches infinity, and thus eiπ is the limit of(1 +iπ/N)N. In this animation N takes various increasing values from 1 to 100. The computation of (1 + iπ/N)N is displayed as the combined effect of N repeated multiplications in the complex plane, with the final point being the actual value of (1 +iπ/N)N. It can be seen that as N gets larger (1 +iπ/N)N approaches a limit of −1.


    http://en.wikipedia.org/wiki/Euler's_identity
    http://ko.wikipedia.org/wiki/%EC%98%A4%EC%9D%BC%EB%9F%AC%EC%9D%98_%EA%B3%B5%EC%8B%9D
    Posted by water_
    ,
    Taylor Series
    functions can be approximated by series

    Comprehensive notes on Taylor Series 테일러 급수 포괄적 자료
    University of Washington Math 126 자료

    http://www.math.washington.edu/~m126/TaylorNotes.pdf


    Taylor series is a representation of a function as an infinite sum of terms that are calculated from the values of the function's derivatives at a single point.

     

    Taylor series (물리과학)
    임의의 함수를 점 x= a 부근에서 다항식으로 근사하는 방법.
    Taylor series (수리과학)
    특정 함수식을 다항식으로 표현하는 방법.
     

    http://alldic.daum.net/dic/search_result_total.do?eq=&LAYOUT_URL_PREFIX=&nil_profile=vsearch&nil_src=dic&type=all&q=taylor+series

     

    "As the degree of the Taylor polynomial rises, it approaches the correct function. This image shows sin x (in black) and Taylor approximations, polynomials of degree 1, 3, 5, 7, 9, 11 and 13."


    "The exponential function (in blue), and the sum of the first n+1 terms of its Taylor series at 0 (in red)."


    Definition

    The Taylor series of a real or complex function ƒ(x) that is infinitely differentiable in a neighborhood of a real or complex number a is the power series

    f(a)+\frac {f'(a)}{1!} (x-a)+ \frac{f''(a)}{2!} (x-a)^2+\frac{f^{(3)}(a)}{3!}(x-a)^3+ \cdots.

    which can be written in the more compact sigma notation as

     \sum_{n=0} ^ {\infin } \frac {f^{(n)}(a)}{n!} \, (x-a)^{n}

    where n! denotes the factorial of n and ƒ (n)(a) denotes the nth derivative of ƒ evaluated at the point a. The zeroth derivative of ƒ is defined to be ƒ itself and (xa)0 and 0! are both defined to be 1. In the case that a = 0, the series is also called a Maclaurin series.




    Fundamentals of Physics (PHYS 200) 16. The Taylor Series and Other Mathematical Concepts
    무표정으로 재미있는 교수 my 이상형 쿸 ah 공부가 필요하다







    http://www.youtube.com/watch?v=KzrdZD4EPXY
    http://en.wikipedia.org/wiki/Taylor_series

    Posted by water_
    ,